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A New Cavity Configuration for Cesium Beam
Primary Frequency Standards

ANDREA DE MARCHI, JON SHIRLEY, DAVID J. GLAZE, anp ROBERT DRULLINGER

Abstract—In the design of cesium beam frequency standards, the
presence of distributed cavity-phase-shifts (associated with residual
running waves) in the microwave cavity, due to the small losses in the
cavity walls, can become a significant source of error. To minimize
such errors in future standards, it has been proposed that the long
Ramsey excitation structure be terminated with ring-shaped cavities in
place of the conventional shorted waveguide. The ring cavity will min-
imize distributed cavity-phase-variations at the position of the atomic
beam, provided only that the two sides of the ring and the 7-junction
feeding the ring are symmetric. In this paper, a model is developed to
investigate the validity of this concept in the presence of the small
asymmetries that inevitably accompany the fabrication of such a cav-
ity. The model, partially verified by laboratory tests, predicts that nor-
mal tolerances will allow the frequency shifts due to distributed cavity-
phase-variations to be held at the 10™'* level for a beam tube with a
of 10%.

[. INTRODUCTION

HE TRAJECTORIES of atoms in atomic beam fre-

quency standards can give rise to a number of system-
atic errors [1], [2]. In this paper we shall discuss two:
residual first-order Doppler shift and distributed cavity-
phase-shift. In principle, it is possible to eliminate both
effects by exciting the atoms with an ideal plane standing
wave. In conventional designs utilizing the Ramsey sep-
arated oscillatory field method, a standing wave is created
by reflecting an incoming wave from the shorted end of a
waveguide cavity.

However, the finite conductivity of metal walls intro-
duces losses which cause the reflected wave to be some-
what smaller than the incoming wave. The resulting cav-
ity field can be described as a superposition of the ideal
standing wave and a position-dependent residual travel-
ling wave, characterized by its Poynting vector P. The
Poynting vector indicates at each point the magnitude and
direction of net power flow inside the cavity. Its compo-
nent P - V along the atomic trajectory must average to
zero to avoid first-order Doppler effects. Furthermore, the
27 /A phase gradient associated with the travelling wave
introduces a phase variation from point to point within the
cavity. As a consequence, the average phase experienced
by the atoms in the two cavities may be different. A fre-
quency shift of the standard then results from this effec-
tive end-to-end phase difference.
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Fig. 1. Schematic representation of possible types of alignment errors in
a traditional Ramsey cavity. In cach case the arrow shows the trajectory
of the atomic beam’s center. In Case A there is no (phase) shift due to
distributed phase, in Case B there is no first-order Doppler shift, and in
Case C they are both present.

The occurrence of the two effects is distinct as illus-
trated by the geometries shown in Fig. | for a typical
Ramsey cavity. Assume for the moment that perfect sym-
metry exists between the two long arms of the Ramsey
structure, so that there is no true end-to-end phase shift.
There are three cases. In Case A the beam’s center of
gravity passes at the same distance y from the short circuit
in both cavities and therefore experiences the same aver-
age phase, but the inclination of the trajectory results in
a first-order Doppler effect. That is, the radiation fre-
quency as seen by the atoms is shifted by

o' N (k) (v) (1)

vy §‘)\g Lc

where { is the relative travelling wave amplitude imbal-
ance at the beam position, { v ) is the average longitudi-
nal atomic velocity, and (h ) is the average displacement
of the beam over the distance L due to its inclination. But
with the same average phase at both ends of the cavity,
no Doppler shift occurs in the drift region between the
cavity ends. Hence, the Doppler shift (1) for the interac-
tion zones of length . is reduced by the factor /. /L when
the Ramsey resonance is observed. The resulting shift, in

a clock where the frequency is servo controlled, is
ov 1. ov’
Tt 2
v L v (2)

In Case B the beam is perpendicular to the residual run-
ning wave in both cavities, but passes at different dis-
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tances from the short circuits. The first-order Doppler shift
is eliminated, but the average phase seen by the atoms is
different at the two ends. The usual formula for the end-
to-end phase shift then applies

o (b89)
v TQ

where Q is the quality factor of the central Ramsey fringe
and (8¢ ) is the end-to-end phase difference caused by
the phase gradient and the beam misalignment.

In Case C we show a trajectory more typical of the beam
optics in existing standards. Both the first-order Doppler
shift and the end-to-end phase shift are present. Although
the two effects are physically different, if (h) = — (&y)
(1) and (3) give equal shifts. However, the additional /. /L
reduction coming from the Ramsey separated oscillatory
fields method usually makes first-order Doppler shifts
negligible. For this reason, only phase shifts will be con-
sidered in the following.

To measure the end-to-end phase shift in a standard,
the direction of the atomic beam is reversed. The intended
result of this ‘‘beam reversal’’ is to accumulate the phase
difference between the ends in the opposite sense, thereby
producing a frequency shift of the opposite sign. The ob-
served phase shift, however, is the difference in the tra-
jectory-averaged phases experienced by the beam atoms
as they traverse each end of the cavity. As pointed out
above, the travelling wave component in the radiation field
results in a phase change with position within the cavity
and across the atomic beam window. For this reason,
beam reversal is an accurate measure of the true end-to-
end phase shift only to the degree that the forward and
reversed beams experience the same average of the dis-
tributed phase at each cavity end. The distributed cavity
phase-shift is not easily measured in a direct way. Most
standards rely on precise retrace of the reversed beam to
minimize its effects. This operational mode sets limits on
the required retrace for a given cavity type and desired
clock accuracy. As an example, for a standard with a Q
= 10® and a phase slope of 50 urad/mm (as one expects
half a wavelength from the end of a shorted copper wave-
guide [4], [7]), a misalignment ( 8y ) of 1 mm produces
a shift of about 2 x 107'3,

In the future, new cesium beam frequency standards
will be designed with overall accuracy goals of at least
107", It will be desirable to reduce distributed phase shift
effects in these standards to not more than a few parts in
10". Using atomic beams with thermal velocities, it is
unlikely that these new devices will have line Q’s much
higher than the 10°. Equation (3) implies that the uncom-
pensated distributed cavity phase shift should not be
greater than 1 purad. It seems unrealistic to think that the
10- or 20-um beam retrace precision required by these
effects in a traditional shorted waveguide cavity can be
guaranteed.

This paper analyzes a ring-shaped cavity [3] that prom-
ises to solve this problem. Section II introduces the cavity

(3)

concept and its potential symmetry problems. Section III
treats the case where some small asymmetry is introduced
into the cavity feed Tee during fabrication and Section IV
looks at the effect of possible asymmetries in the ring it-
self. Section V describes an experimental look at a pro-
totype cavity that confirms the model predictions.

II. Tue RinGg CaviTy CONCEPT

In place of the conventional shorted waveguide at each
end of the Ramsey structure, we propose using the ring
cavity illustrated in Fig. 2. In an ideally symmetric ring
with a perfect T-junction feed, two equal counter-propa-
gating waves combine to form the desired stationary phase
point directly opposite the point where the ring is fed. The
phase variation around this point has a parabolic mini-
mum of the form aBy* (8 = 27 /N is the imaginary part
of the propagation constant v = « + j3) due solely to
the waveguide attenuation in the ring. Phase variations in
the other two directions also occur with parabolic minima
about the center of the waveguide. The coefficients of x?
and z?2 are somewhat smaller than o8, however [2].

The phase variation in the y direction is compared with
that found in conventional cavity designs in Fig. 3. Curve
a shows variations about a position A, /2 away from the
short, where the atomic beam passes in most primary
standards. Curve b shows variations close to the short,
where the beam is passed in commercial standards. Curves
a and b were presented long ago by Lacey [4], but are
now shown in Fig. 3 on a much expanded scale. Curve ¢
shows variations about the symmetry point in the ring
cavity. For a beam of 4-mm diameter centered about the
stationary phase point, no atomic trajectory can experi-
ence a phase more than 7 urad different from that of any
other and the average phase is =3 urad. An error of 10
percent in the phase retrace, corresponding to about half
a millimeter beam retrace imprecision, still meets the 1-
urad specification desired for a new standard. It appears
feasible to maintain mechanical uncertainties in the cavity
and beam parameters (e.g., optical pumping laser beam
positioning) within this tolerance. The distributed cavity
phase shift problem, therefore, seems to be solved.

However, a difficulty arises from the consideration of
possible electromagnetic asymmetries in the ring struc-
tures.. An imbalance in the amplitudes of the counter-
propagating waves launched in the ring by the junction,
or a propagation asymmetry in the two arms of the ring,
can cause the two waves to be unbalanced aty = 0. As a
result of their oppositely directed propagation loss, they
will then be balanced somewhere else and the phase min-
imum will be displaced.

If the phase minima in the two rings are displaced by
d, and d, with respect to the centers of their respective
beam holes, the average phase difference is (6¢) =
aB(df - d%) for a uniform beam (centered on the holes).
Additionally, if the centers of the forward and reversed
beams pass instead at an average distance y; from the hole
centers, and 8y; from each other in the ith cavity, then
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Fig. 2. Geometry of the proposed ring cavity with schematic definition of
symbols.
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Fig. 3. Spatial phase variations for standard X-band copper waveguide in
three different configurations: (a) beam passing X, /2 from a waveguide
short, (b) beam passing near the short, and (c) beam passing at the phase
minimum in a ring cavity.

(86> = 2aB[(d, — y) 8y, = (dy — y;) ;1. The I-
urad condition on { 8¢ ) imposes (d; — d>) — (y; — ¥2)
< 0.5 mm if both 8y; are smaller than 0.5 mm. In the
worst case this would require that both values of d; be <1
mm. We will take this as our guideline for the specifica-
tion on mode definition.

The concept of phase minimum displacement can be
more precisely described in terms of the standing wave
mode excited in the cavity. In the absence of an obvious
mode-defining feature in the ring, the resonant mode is
free to rotate and settle in any position guided only by
very small and unpredictable irregularities and asym-
metries. In the ring of Fig. 2, however, the T-junction is
a feature which clearly breaks cylindrical symmetry. How
effective is it in defining the desired mode in the presence
of mechanical imperfections? The rest of this paper will
discuss how much imbalance or mode rotation can be ac-
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cepted, and how much should be expected from reason-
able fabrication techniques.

The question of overall ring cavity symmetry is sepa-
rable into two parts: the T-junction, which will be ad-
dressed in Section III, and the ring itself, which will be
addressed in Section IV.

III. 7-JUNCTION ASYMMETRY ANALYSIS

An intuitive understanding of how asymmetries come
into play can be grasped more easily using the standing-
wave cavity mode approach, rather than a running-wave
description. The basic field pattern in a ring can be de-
scribed by a linear combination of two orthogonal fun-
damental modes. We shall call these two modes D and U,
for desirable and undesirable. The natural basis in our case
is determined by the T-junction. We choose to use an E-
plane Tee so that mode D has a magnetic field maximum
at the T-junction and at the atomic-beam-passing hole.
Mode U is rotated X ,/4 from this position. Mode D has
the correct orientation to couple strongly to the feed Tee,
while mode U couples only through asymmetric imper-
fections in the T-junction. To first order, all of the effects
of asymmetry are then isolated in mode U.

As a result of its weak coupling, mode U has a high Q
while mode D does not. Since the two modes couple dif-
ferently to the feed arm, they experience a slightly differ-
ent electrical length across the Tee. Hence, they resonate
at different frequencies. As will be seen, these differences
in resonant frequency and Q values for the two modes
make it possible to reduce sensitivity to asymmetry to ac-
ceptable levels.

We begin the analysis of the ring structure by introduc-
ing the running-wave amplitudes indicated schematically
in Fig. 2. The outgoing amplitudes b; from port i are re-
lated to the incoming amplitudes g; at the reference planes
by the scattering matrix for the junction. We shall neglect
losses in the junction; hence the scattering-matrix is uni-
tary. But the losses in the waveguide arms will be retained
since they are the origin of the phase variations we are
studying.

The scattering matrix of an E-plane Tee with small
asymmetries can be represented by S + E [3], where

R M T €R 0 €r
S=|M R -T and E=[0 —e er
T -T K €r €r 0

(4)

are the symmetric and antisymmetric parts of the total
scattering matrix. In general all elements of S and E are
complex. For convenience, we choose reference planes
such that T is real. The unitarity conditions on S then im-
pose (corrections second order in E are neglected)

M+R=e¢” and M- R = K* (5)



188 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. VOL. 37. NO. 2. JUNE 1988

where 0 is defined by this equation. Its meaning will be
discussed below. A first-order relationship between ez and
er is also found from the unitarity condition on S + E.

The ring geometry causes the wave leaving port 1 to re-
enter the junction at port 2, and vice-versa. For a ringing
of length /, we thus obtain the feedback relations

a, =bye™ and a, = be (6)

at the junction reference planes. These relations, com-
bined with the scattering matrix relations, allow a solution
to be found for all the travelling wave amplitudes in terms
of the input amplitude a;.

At a distance y into arm 2 from the geometric symmetry
point where the beam is passed, the travelling wave am-
plitudes are

bi(y) = be ™2 and by(y) = bye T2,
(7)

The relevant magnetic field at the beam is H( y) = b,( y)

— by(y). Dropping the fixed phase factor e 2 we can
write

H(y) = (bie™ — be™). (8)

When the junction is symmetric b, = —b, = band H( y)
= 2b cosh vy, the desired cosine standing-wave mode D.
For By << 1 its phase variation is a8y as already stated.

When the T-junction is slightly asymmetric, the result-
ing mode can be represented as a superposition of the D
and U modes

H(y) = (by — by) cosh yy — (b) + by) sinh vy (9)
or, introducing —b, = b — ¢, and by = b + ¢,, as
H(y) = 2b{cosh vy — ¢,/b sinh yy).  (10)

The presence of mode U causes the actual field pattern in
the cavity to rotate and shift its phase with respect to mode
D. To find how much rotation and phase shift occur, the
real and imaginary parts of ¢,/b must be found. After
some algebra involving (4)-(6), (10) and the relationship
between e and e, we find the relative amplitude for mode
U to be

2__ImeT+Reer_oz_1 ..
b J T T 5 JSIHXCOSX/

oo 3

where ol << 1 and

(11)

x=4(Bl +9). (12)

Equation (11) shows that mode U has a sharp resonance
(Qu = B/a = 10* for copper) centered about a fre-
quency yy lower than v, the center frequency of the
broader mode D. Mode D is defined by 8/ = 2nw when [
corresponds to that position of the reference planes which
makes K real. For standard X-band waveguide at the ce-

sium frequency

1 6

vu/vp = 1 =55

(13)
where n is the number of wavelengths around the ring.
The meaning is clear if one interprets 6 as the electrical
length (in radians) of the Tee between the selected refer-
ence planes. Since mode U couples only very weakly to
the outside, it is resonant in a ring of length [ + &/8;
where as, mode D resonates in a ring of length /. Hence,
if n is small, v, — vy may be substantial. For example,
forn = 2, and 6 = 0.14 radians as calculated in [3], the
fractional separation between the two modes turns out to
be about 6 X 1073, This separation can be used to reduce
the effect of asymmetries. If we operate the cavity cen-
tered on resonance for mode D we are =100 half line-
widths away from mode U, and coupling to mode U is
therefore reduced by an additional factor of = 10*.

The effect of a small junction asymmetry can now be
easily calculated from (10) with the approximation | ¢, /b |
<< 1. In this case the mode becomes cosh (yy — ¢€,/b).
If the argument in parentheses is small, the phase is sim-
ply the product of its real and imaginary parts. Equating
to zero the derivative of the phase with respect to y, one
finds the position y,, of the stationary phase point and its

phase ¢,

l1/1Ree, 1Ime, 1 Reg,
=~|- - = — 14
ym2<ab+6b>2ab (14)
o = Lo gRee,,_Ime,,2~_1g<Reeh>2
" 4B\a b b T 4al\ b )
(15)

Equation (14) quantifies the result found in Section II from
a straightforward discussion of the travelling wave im-
balance. Both (14) and (15) set the condition Re €, /b <
2 X 1077 in order to have y,, < I mm and |¢,,| < 107°
radians. Assuming that Re ¢, /b < 107> must be assured
because contributions from the two cavities may add, the
condition Re e;/T < 8 x 107 is found from (11) eval-
uated at x = 6. Recalling the arguments on the averaging
of distributed phase shift effects in beam reversal which
were made in Section II above, if the end-to-end phase
shift, ¢,y — ¢,,,, is corrected by a beam reversal, we may
relax the condition to Re e7/T < 2 x 107,

The specification above is obtained assuming that mode
D is centered at the atomic resonance frequency. How-
ever, this mode is very broad and can be excited with little
intensity loss on the high side of center frequency. In this
way, rejection of mode U can be easily increased, thereby
relaxing the symmetry specification to the order of Re
er/T < 1073

We next need to relate fabrication imperfections to
electromagnetic asymmetries. The three possible angle
errors in manufacture of the Tee may be treated as related
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to junction asymmetries while all errors in linear dimen-
sions will be treated as part of the ring. It can be shown
that a rotation of the feed arm about its axis does not break
the symmetry of the junction, nor does a tilt out of the
plane of the ring. However, a tilt § in the plane of the ring
will introduce an asymmetry. It can be calculated by the
approach of [5], that an upper limit for the dependence of
Re €7/T on the angle 0 is Re e;/T = 0.26, with 6 in
radians [6]. If care is taken in dimensioning a two-wave-
length ring, it is therefore sufficient that 8 be less than 0.5
X 1077 radians in order to guarantee that phase-shift ef-
fects on t]hse measured cesium frequency will be lower than
3 X 1077,

IV. RING ASYMMETRY

A similar displacement of the stationary phase point can
be caused by propagation asymmetry in the two arms of
the ring even if the Tee is perfectly symmetric. If we let
b, = —b, = bye/? for a symmetric junction, but insert
different propagation constants v, and v, into (7), we ob-
tain the magnetic field at the atomic beam

H(y)) = 2bg cosh (yy — &yl/4). (16)

Herey = 5(7y, + 7v,) is the average propagation constant,
&y = v, — v = da + jof represents the difference be-
tween propagation constants for the two arms of the ring,
and &y y has been neglected. In analogy to (14) and (15)

we find
_ L (s o8
ym—8<a + 6>

I\ (6 8B\’
a(s) (5-%)
If both 6ac /o and 83 /B are less than 1072, y,, is less than
0.2 mm for a two wavelength ring and ¢,, is unimportant.

This condition on the uniformity of the ring waveguide
seems quite easy to satisfy.

(17)

I

D (18)

V. EXPERIMENTAL MEASUREMENTS

To check the validity of the model just developed, a
prototype ring cavity was made with / = 4\,. The cavity
consists of two half-shells milled in copper and held to-
gether by guide pins and bolts. The 7-junction is an open
E plane Tee in standard X-band waveguide. This tightens
the symmetry requirements with respect to other coupling
configurations (a small iris or H slit would make sym-
metry easier) but maximizes mode separation.

A coaxial probe was inserted into the center of the wide
side of the waveguide, 1 mm from the center of the atomic
beam passing hole (y = 1 mm). This probe couples to
the E-field with a sensitivity which is much higher for
mode U than for mode D. The results of the E-field mea-
surements made with the probe are shown in Fig. 4.

In the same way followed to obtain (10), the E field can
be written

E(y) = —2b(sinh vy — ¢,/b cosh vy). (19)
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Fig. 4. Experimental measurement of the relative intensity (E*) of modes
U and D in the test cavity as a function of frequency. The probe was |
mm from y = 0 so that the sensitivity was maximized for mode U and
attenuated about a factor of 50 for mode D.

The signal observed with a square law detector connected

to the probe is (in the limit ay << 1) proportional to
2

’E'z = 4b{sin2 By + ‘%’ cos” By

R I
2% oy — B gin ZBy}. (20)

b b
The first term with the null at y = 0 is mode D. The fol-
lowing two terms give the peak corresponding to mode U,
and the last term produces the dispersive aspect of the
peak shown in Fig. 4. The maximum and minimum in
Fig. 4 can be found from tan 28y = 2 Im ¢,/b. At reso-
nance for mode U, (20) and (11) give

2
2 _ _ 2l .2 ReET/T
|E| .. = Vu=14b {sm By+< ol /2 >
Re /T
- cos? +—Tz} 21
cos’ By o)z (21)

At resonance for mode D we have simply V), = 4b7 sin’
By. The magnitude of Re €7/ T can be estimated from the
ratio between measured peak values Vi and V), of the two
modes

|Re e7/T| = aB| y|1/2N(Vy/Vp = 1). (22)

The resonance curve of Fig. 4 shows a measured ratio
Vy/Vp = 3, which yields, through (22), a value Re e/ T
= 1 - 107 for the asymmetry of the T-junction. This
corresponds to an inclination of the Tee § = 0.5 mrad.
This value is the minimum that could be experimentally
obtained by varying the penetration depth of the probe
into the guide. In this instance the probe was flush with
the waveguide wall. Even in this situation, the probe itself
might have been disturbing the symmetry enough to pro-
duce a significant part of the observed U mode. Our result
should be taken only as an upper limit to the asymmetry
of the structure. Since this still meets the specifications
outlined above, we have concluded that the fabrication
technique used is adequate for our needs.

In the light of our experimental results, there seems no
reason to doubt the model developed here. However, the
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ultimate verification will have to await actual use in a
standard where an atomic beam of reduced diameter can
be used to probe the actual distributed phase shift [7].

VI. CONCLUSIONS

In this paper we have considered the accuracy-limiting
effects of distributed cavity-phase-shift in primary cesium
beam frequency standards. We conclude that this effect
imposes too tight a beam reversal retrace requirement for
accuracies in the 107" range to be attainable with tradi-
tional cavities.

A ring cavity concept was introduced to reduce the
phase variation across the atomic beam by creating a par-
abolic phase minimum. In this way, distributed phase un-
certainties become negligible if the beam is reasonably
centered on the stationary phase point.

It was also shown that asymmetries in the ring structure
can unbalance the two running waves, displacing the
phase minimum from the atomic beam passage point.
Small asymmetries were analyzed in a standing wave for-

malism which localizes the effects in a single mode and
provides a good intuitive picture. Asymmetries can be
controlled to the desired degree in a suitable design. The
proposed cavity should reduce uncertainties from distrib-
uted phagse effects to the low 107 '* range for devices with
Q0 = 10°.

REFERENCES

{1] D. J. Wineland, D. W. Allan, D. J. Glaze, H. W. Hellwig, and S.
Jarvis, Jr., *‘Results on limitations in primary cesium standard opera-
tion,”” IEEE Trans. Instrum. Meas., vol. IM-25, pp. 453-458, 1976.

2] S. Jarvis, Jr., **Molecular beam frequency biases due to distributed
cavity phase shift variations,”” NBS Tech Note 660, 1975.

131 A. DeMarchi, **A novel cavity design for minimization of distributed
phase shift in atomic beam frequency standards.”" in Proc. 40th Fre-
quency Control Svmp., 1986, pp. 441-446.

[4] R. F. Lacey, ‘'Phase shift in microwave Ramsey structures,”" in Proc.
22nd Frequency Control Symp., 1968, pp. 545-558.

[5] L. Lewin, Theory of Waveguides. New York: John Wiley, 1975.

[6] L. Lewin, Dept. of Elec. Eng., Univ. of Colorado, private commu-

nication, May 1986.

A. Bauch, T. Heindorft, and R. Schroeder, **Mecasurement of the fre-

quency shift due to distributed cavity phase difference in an atomic

clock,”” IEEE Trans. Instrum. Meas., vol. IM-34, pp. 136-138. 1985.

17




